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Tropical cyclone track analog ensemble forecasting in the
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Ensemble-Weighted Analogs (EWA) are introduced as an empirical forecast model
for tropical cyclone (TC) tracks in the Australian basin extending to the Indian
Ocean. The input requires only the 6 h positions of the preceding 24 hours to
estimate the actual TC’s future locations (up to 48 hours ahead) using optimally
weighted ensemble members (analogs) from sections of historic cyclone tracks. They
are determined as nearest neighbours of the actual track positions. After model
calibration, independent forecasts are evaluated (2001–2007). The forecast analy-
sis shows an error of about 140 km (for the 24 h prediction), which is better than
the CLIPER reference forecast (161 km) and comparable to a numerical weather-
prediction model (NWP of the UK Met Office). Intensity estimates and the forecast
error-spread relation are discussed. Error-minimizing forecast combinations are
also analysed: the EWA–NWP combination improves the individual 24 h NWP fore-
casts by about 25 km. Track cluster conditioned 24 h EWA forecasts are introduced
providing probability estimates of hazardous areas. Finally, two cases of sudden
track changes and their forecasts are presented with fields of position probabilities
derived from the analog ensemble members and their clusters. Copyright c© 2012
Royal Meteorological Society
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1. Introduction

In the last decade numerical weather-prediction (NWP)
models have substantially improved the forecast accuracy
of tropical cyclones tracks, while advances of intensity
forecasts have been modest (for the west Pacific region,
see Knaff et al., 2003). The overall improvement is due
to better models, assimilation techniques, and ensemble
forecasts reducing the influence of initial uncertainty (Zhang
and Krishnamurti, 1997). Thus empirical models, the
majority of which are of the climatology–persistence type
(for example, CLIPER: Neumann, 1981) and well suited
for easy-to-implement applications, appear to fall out of
favour. But, as demonstrated first by Leslie and Fraedrich
(1990), it is the combination of independent forecast

schemes, that is, dynamical (NWP) and statistical–empirical
forecasts, which may still substantially improve forecast
performance.

Empirical weather forecast schemes for tropical cyclone
tracks are based on linear (Markov-type) approaches (Leslie
et al., 1992) or nonlinear schemes like analog methods,
which provide weighted ensemble mean forecasts. As the
latter have also gained theoretical interest analysing weather
predictability based on physical (Lorenz, 1969) or time-
delay coordinates (Fraedrich and Leslie, 1989), they appear
to be particularly suitable for many kinds of weather- or
climate-related prediction issues. Such empirical models
using analog search are employed for tropical storm-track
forecasting (Hope and Neumann, 1970; Neumann, 1972;
HURRAN (hurricane analog techniques) and CLIPER),
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and have been extended to chaotic nonlinear time series
methods employing a self-adapting metric (Fraedrich and
Rückert, 1998) which, after further improvements by
statistical analysis techniques, were applied to tropical
cyclone track forecasts (Bessafi et al., 2002; Fraedrich et al.,
2003). Corresponding models to forecast tropical cyclone
intensity based on time series are SHIFOR and SHIP
(Jarvinen and Neumann, 1979; Knaff et al., 2003); these
models are limited to intensity forecasts on open sea, and
landfall events leading to sudden intensity changes should
be excluded.

The purpose of this paper is threefold: (i) an analog
forecast method based on metric adaption is extended to
an ensemble-weighted scheme by jointly optimising the
state space metric (providing the past analogs) and the
weights of the ensemble members (generating estimates of
the future states and forecast error); (ii) an error-minimizing
combination with the cyclone track predictions issued by
the UK Met Office (UKMO) NWP model is used to obtain
an improvement of tropical cyclone track forecasts and
to compare the NWP predictions with a combination of
two empirical schemes (weighted analog ensemble and the
classical CLIPER); and (iii) the analysis focuses on the
extended Australian cyclone basin, as it appears that for
this region the forecasts have not reached the high level
of accuracy as for other tropical storm basins, for example
the North Atlantic. The outline is as follows: in section 2,
database, model building, model calibration and method
of forecasting are described. Section 3 evaluates forecast
accuracy of position, intensity (surface pressure) and of
the ensemble predicted forecast error (spread). Finally, in
section 4, the empirical forecasts are further optimised by
combining them with the numerical weather predictions and
another empirical forecast scheme. Finally, areas spanned
by clusters of the ensemble forecast tracks are compared to
those of the numerical weather predictions to analyse the
performance for hazardous areas. Section 5 summarizes the
results.

2. Ensemble-weighted analog (EWA) forecasts: model
building

Analog models can be successfully applied to arbitrary
nonlinear dynamical systems represented by a long time
series (Takens, 1981) where, for practical purposes,
embedology (Sauer et al., 1991) has been employed spanning
a state space of time-delay coordinates. While adaption of
the state space metric optimises utilization of the observed
history (Fraedrich and Rückert, 1998), the weighting of
forecast ensemble members allows further optimisation for
prediction. That is, Ensemble-Weighted Analogs (EWA)
combine these two features of utilizing the past (by
metric adaption) and optimising the future (by ensemble
weighting).

Empirical prediction models require a forecast function
constructed by the ensemble members, a metric structure
leading to weighted contribution of each ensemble member,
and a cost function to perform the optimisation procedure.
This leads to optimal model parameters for the state space
metric and number and ranking of ensemble members. A
short outline of the approach follows in four steps.

Step 1 (Dataset): Tropical cyclone tracks are embedded in
a state space whose positions are given by time-dependent
latitudes and longitudes. The occasionally supplemented

central pressure and/or wind speed values are used only to
attach intensity information a posteriori to the forecast
ensemble selected. Transformation of the geographical
tracks to relative ones involves normalization with the
cosine of latitude. The data are binned into the following
subsets: (i) learning set; (ii) independent forecast and
NWP–combination set; and (iii) the final test set.

Step 2 (Model building): The forecast function (prediction
system) is the core of the ensemble weighted analog scheme,
which is calibrated in the learning period. A cost function
(error in terms of tropical cyclone state space variables)
is minimized comparing forecasts with the associated
realizations to provide a state space metric for the forecast
function (utilizing the past) and to determine the weights
of the ensemble members (optimising the future ensemble
mean).

Step 3 (Forecast and verification): Forecast performance is
analysed in terms of ensemble mean errors in position and
intensity, and error-spread relations for various lead times.

Step 4 (Combination forecasts, hazardous areas and case-
studies): In section 4 we propose a method to combine this
model with NWP forecasts for error reduction. Hazardous
areas are marked by spatial ensemble track distributions,
and case-studies illustrate the application.

2.1. Dataset

Tropical cyclone (TC) best track data contain observations of
centre positions. The central surface pressures, which reveal
approximately 50% missing values (Australian Bureau of
Meteorology (BoM), 1956 to 2007) are partially completed
by data from Université de la Réunion (Figure 1). The mean
lifetime of the total of 553 constituted TCs is about 151 h
with a spread of 37 h, where TCs of less than 24 h life
span are excluded. For model calibration we use the data
up to 1991; the NWP combination (regression) is based on
independent forecasts from 1992 to 2000 (104 cyclones with
174 observations), and the period 2001–2007 (64 cyclones
with 378 six-hourly observations) serves as an independent
test period (Figure 2). Using a learning dataset consisting of
randomly sampled cyclone tracks, we utilize data of different
observing technologies for model building. Note that the
combination and test sets contain data based on recent
technology (e.g. geostationary satellites). The deterministic
NWP system of UKMO (global grid-point model solving
the primitive equations at about 40 km resolution) provides
forecasts whose daily verification statistics (Staniforth et al.,
2004), published on a monthly basis, is used for lead times
up to 144 h. The tropical cyclone state space used here
comprises (i) the cosine of latitude and (ii) the subsequent
differences from the preceding value: latitude, longitude and
central surface pressure. Missing position values and central
pressure are linearly interpolated. Note that central pressure
is not used in the cost-function analysis.

2.2. Model building: forecast function and cost-function
optimisation

The forecast function Fn(t, j) is the backbone of the
ensemble-weighted analog forecasts (EWA). It provides the
ranking of the weighted mean of the ensemble members
(that is the historical analogs selected from the dataset)
and, commencing at time t, it predicts the jth time step
of each state space vector yn consisting of n = 1, . . . , N
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Figure 1. Best tracks (lines) in the extended Australian basin.

components.

Fn(t, j) =
K∑

k=1

r2
k · yn(tk + j)/

K∑

k=1

r2
k (t, tk) (2.1)

Segments of historical tropical storm tracks represent
vectors (points) in state space, whose (embedding)
dimension is given by the number of variables, which
includes their temporal evolution. That is, the state vector
yn comprises the state space variables (cosine of latitude,
differences of latitude and longitude); the central pressure
information does not enter as predictor but is used to
supplement the forecasts in the output. Note that the Julian
date, which represents seasonality, is not included in the
state space, because no performance improvement was
achieved. The time tk denotes the start of the kth analog
(reference time t). The ensemble size K (of the k = 1,
. . . , K ensemble members) describes the analogs in terms
of nearest neighbours of the base point, which is defined
by the actual cyclone track segment. Finally, the ranking
function rk (Eq. (2.2)) characterizes the relevance of the
kth ensemble member relative to the discarded (K + 1)th
analog or neighbour in terms of the weights, dk and dK+1:

r2
k (t, tk) = 1 − d2

k(t, tk)

d2
K+1(t, tk)

. (2.2)

Thus, for example, extending the time segment of an
analog state vector (which is the nearest neighbour to the
base point) provides the forecast of the ensemble member
of highest rank rk. Note that the Euclidean distance metric,
dk, depends on weights λi:

dk(t, tk) =
N∑

n=1

M∑

m=1

λ2
l · {yn(t − m) − yn(tk − m)}2, (2.3)

which are associated with squared differences between K
pairs of track segments of length M (embedding dimension).
A pair consists of (i) the actual TC track segment up to
forecast step t, which represents the base point, and (ii)
its kth neighbour representing a historic track segment
commencing at tk. The number of n = 1, . . . , N state
space variables (state vector) and the time segment length
(embedding) m = 1, . . . , M are preset; the total number of
k = 1, . . . , K neighbours (ensemble members) determines
ranking of the nearest neighbours in terms of λi -weights,
indexed by l = m + M · (n − l).

The cost function (squared error) is used for optimisation
as follows: metric weights λi and thus the ensemble member
rankings rk are determined by optimising a cost function
C(λ, rk), which measures the forecast error in terms of the
squared distance (error) between the weighted ensemble
mean forecast set Fn(ti, j) up to lead time j (with j = 1, . . . ,
J prediction steps) and the respective verifying observations
y(ti + j), all commencing at ti; the errors are averaged over
i = 1, . . . , I forecasts trials and j = 1, . . . , J lead times in
6 h steps:

C = 1

N · I · J
·

N∑

n=1

I∑

i=1

J∑

j=1

|yn(ti + j) − Fn(ti, j)|2. (2.4)

Now, the metric weights λl and rankings rk of nearest
neighbours can be optimised by minimizing the cost
function (Eq. (2.4)) as described next.

The cost function is determined by the track forecast error
defined by the great-circle distance d (Eq. (2.5)) between
a cyclone’s forecast position P2(λ2, φ2) and its best-track
position P1(λ1, φ1) at the forecast verification time:

d(P1, P2) = REarth · π

180
· arccos{sin(ϕ1) · sin(ϕ2) (2.5)

+ cos(ϕ1) · cos(ϕ2) · cos(λ1 − λ2)}.

Figure 2. Data structure schematic.
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Figure 3. Flow chart of Cyclic Coordinate Method (CCM) for minimizing
cost function with initial metric weights λpreset and ensemble members k.
This figure is available in colour online at wileyonlinelibrary.com/journal/qj

The positions are λi(t + j) = λi(t + j − 1) + �λi(t + j)
and ϕi(t + j) = ϕi(t + j − 1) + �ϕi(t + j).

A gradient method is applied to optimise the cost function
C (Eq. (2.4)). The parallel tangent PARTAN gradient
algorithm is used here (Bazaraa et al., 1993, pp 334–340) in
differentiating the cost function with respect to the distance
weights. PARTAN is less sensitive to local minima than, for
example, the Newton–Raphson method. The optimisation
starts with an initial number of ensemble members k, and
exponentially preset metric weights. This yields optimal
metric weights and ranking of the ensemble members, which
enter the actual ensemble forecasts. Iterative repetition
of this procedure leads to the cyclic coordinate method
(CCM) which optimises the (integer-valued) ensemble
size K, that is defined as the maximum ensemble size,
i.e. the used ensemble members. Here a generalization
is applied combining cyclic optimisation with gradient-
based optimisation (McNames, 2002). Given initial metric
weights λStart, the number of ensemble members k starting
with kStart = 2 is increased to obtain the related optimum
ensemble size K (at minimum cost function) with new
metric weights λ. CCM is repeated with new metric weights
until a quasi-saturation level is reached, i.e. the difference
of C and Cold is less than min=0.01%, and the cost function
approaches a minimum or an asymptotic value at final
ensemble size K. A flowchart illustrates the procedure (see
Figure 3).

Figure 4. Metric weights of the the Ensemble-Weighted Analog model
(EWA, 1956–1993) for the extended Australian basin: optimized (bars)
and initially preset weights (lines).

The cost function C is optimised within a control period
(1956–1993) with 321 tropical cyclones; 85% (reference
dataset, Figure 2) provide the pool of analogs available for
optimising the ensemble weights based on errors obtained
by predicting the remaining 15% of the control period. After
calibration within the control period, independent model
predictions are performed using the control dataset as analog
pool and the verification dataset (1994–2007) with 135 TCs
(in section 3) for performance analysis. The metric weights
(Figure 4) determined by the optimisation show only a weak
deviation from the initially preset exponential distribution:
the weight of the latest actual position (cosine of latitude at
lead time 0 h) is dominant, indicating the influence of the
mean large-scale atmospheric state at that latitude on the
performance. The weights of latitude differences (between
actual and preceding positions) are initially larger than
those of longitude differences, also indicating the memory
of the large-scale mean zonal flow. It must be emphasized
that the gradient algorithm is sensitive to local minima,
where a compromise between iteration number and a
convergence criterion ends the minima search. The final
metric weights and the maximum ensemble size, K = 150,
are fixed for cost-function evaluation and independent
forecasting (section 3). Larger ensembles did not lead to
better results (due to overestimation). Note that the learning
set contains many more historical tracks so there is no lack of
analogs.

In summarizing, Figure 4 demonstrates the 12-
dimensional vector spanning the tropical cyclone track phase
space used for ensemble-weighted analog forecasts. It con-
sists of a time-window of 0, 6, 12 and 18 h commencing
with cos(lat) at 0 h, followed by the latitude and longitude
differences, delta(lat) and delta(lon), between subsequent
track locations at 0 to 6, 6 to 12 and 12 to 18 h in order
to characterize the 6-hourly drifts of the tropical cyclone.
Using cos(lat) instead of latitude accounts for the bias
induced by the Coriolis force affecting the cyclone posi-
tion, which is supported by optimisation tests (not shown).
Likewise the initial longitude dependence (at 0 h) in the
Australian basin did not lead to improved forecast accuracy.
Note that all results have been obtained by metric weight
optimisation.
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Table 1. Tropical cyclone arithmetic mean forecast error (km), in the extended Australian basin and the Indian Ocean, changing with forecast lead time
(hour) for the EWA model based on best track data with optimized parameters (1956–1993).

Lead time (h) 12 24 36 48

CLIPER – 161 – 360
EWA 65 144 243 354
UKMO NWP – 139 – 255
Combination: EWA + UKMO NWP – 118 (116) – 270 (262)
Combination: EWA + CLIPER – 139 (139) – 344 (346)
Combination: UKMO NWP + CLIPER – 117 (117) – 245 (245)
Combination: UKMO NWP, CLIPER + EWA – 116 (114) – 269 (260)

Reference forecasts of CLIPER and NWP are both provided by UKMO, combination forecasts of EWA + UKMO, EWA + CLIPER, UKMO + CLIPER
and UKMO + CLIPER + EWA (values in brackets indicate the values for a quadratic regression), all over 2001–2007 at the same TC days forecasts.

3. Cyclone track ensemble forecasts: position error and
spread

Independent cyclone track forecasts are evaluated in the
extended Australian basin (including the Indian Ocean)
using the optimised parameter set (see section 2). First,
EWA performance is compared with the best track and
compared with the UKMO NWP and CLIPER forecasts
provided by the UKMO for 1994 to 2007 including a
season-to-season varying verification climatology. Finally,
the ensemble spread is determined to estimate the model’s
error-forecast capability.

3.1. Position error

The 7-year best-track forecast statistics of great-circle errors
(Eq. (2.5)) are based on data provided by UKMO. They
contain the NWP and CLIPER great-circle errors of forecasts
starting at 0000 UTC and 1200 UTC for 24 h lead time as
well as those from corresponding EWA forecasts calculated
from Australian BoM best track positions.

3.1.1. Model comparison

Track forecast evaluations are presented in Figure 5 and
supplemented by Table 1. EWA great-circle errors (378
forecasts in 2001–2007) for lead times up to 48 h are
calculated in 6 h time steps, while UKMO great-circle errors
are available in steps of 24 h (Figure 5). The following results
are noted for single model predictions: (i) EWA track errors
grow with increasing lead time from 144 to 354 km for 24
to 48 h; (ii) EWA track errors lie between UKMO NWP
with 139 and 255 km at 24 and 48 h, compared to CLIPER
growing from 161 to 360 km for 24 to 48 h lead time,
respectively; (iii) EWA generally performs better or equal to
UKMO NWP at lead times shorter than 24 h and approaches
CLIPER errors beyond 48 h lead time; and (iv) UKMO NWP
and EWA are always better than CLIPER forecasts up to 48 h.
Note that EWA is optimised using one-day track segments
for data assimilation prior to forecasting one and two days
ahead. EWA forecasts with lead times between 48 and 72 h
(and longer) attain errors which are of similar magnitude
to those of regression-based statistical models like CLIPER.
Therefore, we do not extend EWA forecasts beyond 48 h.

3.1.2. Forecast error climatology

The great-circle error distribution from 2001 to 2007 for
24 h lead time shows (Figure 5(b)) the following results:

(a)

(b)

Figure 5. Australian tropical cyclone position forecast errors 2001–2007
(compared to the best track data, in km): (a) Mean great-circle errors
changing with lead time (hours) are shown for the Ensemble-Weighted
Analog (EWA) prediction model (solid line with circles; 6 h time step), the
Australian CLIPER forecasts (dashed-dotted line with triangles; 24 h time
step), and the UKMO NWP forecasts (shaded area below dotted line with
diamonds). The error-minimizing combination EWA–UKMO forecast
performance is also included (dashed line with squares; 24 h time step,
see section 4). (b) Australian tropical cyclone position error climatology
2001–2007 (for 24 h lead time, in km) for the EWA prediction model
(solid line with circles), the Australian CLIPER forecasts (dashed-dotted
line with triangles), the UKMO NWP forecasts (dotted line with diamonds)
and the error-minimizing combination EWA–UKMO (dashed line with
squares). The seasonal forecast frequencies and storm counts (left and right
columns) are also shown.

(i) except for 2001 there is almost no change in forecast
performance and cyclone activity; the season 2001/2002 may
be considered as an outlier with only one tropical cyclone
being predicted and occurring in both the UKMO and
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Table 2. Seasonal great-circle error differences (km) of 24 h and 48 h forecasts.

Season EWA 24 h EWA 48 h CLIPER 24 h CLIPER 48 h Combination: Combination: Observations
EWA + UKMO NWP EWA + UKMO NWP

1992–2000 − 52 16 124 171 −69 −56 174
(200) (363) (200) (363) (200) (363)

2000–2007 5 98 22 104 −21 15 378
(139) (255) (139) (255) (139) (255)

2001 6
2002 19 134 5 59 −1 60 27

(119) (212) (119) (212) (119) (212)
2003 3 26 26 123 −21 24 95

(138) (234) (138) (234) (138) (234)
2004 −26 59 −18 53 −47 −18 68

(154) (267) (154) (267) (154) (267)
2005 24 171 60 186 −14 −53 48

(120) (204) (120) (204) (120) (204)
2006 40 152 64 151 4 49 69

(122) (247) (122) (247) (122) (247)
2007 9 6 77 44 −26 54 65

(154) (336) (154) (336) (154) (336)

For EWA, CLIPER, and combination EWA + UKMO NWP related to UKMO NWP (in brackets); bold numbers for >95% significance (two-sided
t-test). Note, there are less than ten observations in 2001 and no test is performed.

Australian BoM provided data constituting the test set; (ii)
the performance variability of EWA and UKMO fluctuates
without demonstrated superiority of either one; and (iii)
only CLIPER shows consistently less accurate forecasts and
error fluctuations similar to EWA.

3.1.3. Significance test of forecast performance

We implemented a two-sided t-test to check the significance
of EWA and EWA plus UKMO NWP combination forecasts
compared to UKMO NWP predictions. Applying the test
to the 24 h predictions (1992–2000) shows (Table 2) the
UKMO NWP to be significantly worse (52 km) compared to
EWA; for 2001 to 2007 NWP predictions improve, and the
EWA–NWP combination forecasts are significantly better
than NWP forecasts. Note that the 48 h forecasts of both
EWA and CLIPER show significantly larger great-circle
errors than UKMO NWP.

3.2. Error-spread relation

Ensemble spread is a measure of the ensemble members’
dispersion and determines the expected forecast error (in
a perfect model and perfect ensemble environment, see
e.g. Elsberry and Carr, 2000). The error-spread relations
for EWA forecasts are illustrated in Figure 6 (including a
sample size histogram at top, grey bars): ensemble mean
great-circle errors are sampled in ensemble spread bins of 5,
10 and 20 km for 12, 24 and 48 h predictions, respectively.
The model output is calculated with weighted ensemble
forecasts to determine the error-spread correlation (Grimit
and Mass, 2007). The following results are noted (Figure 6):
(i) error-spread scatter diagrams (Figure 6(a), (c), (e) or left
panels) provide the database for the statistical analysis which
show many cases with small spread and small error and fewer
cases of large spread and large error; (ii) the error-spread
relation is almost linear with a small quadratic contribution
(not shown) and the linear slope (numbers in Figure 6(b),
(d), (f) or right panels) increases with lead time; and (iii)
the histogram (grey bars at top of Figure 6, right panels) of

spread frequencies shows that most forecasts are associated
with medium-range spread. High spread and small great-
circle errors occur if many ensemble members head towards
the correct direction, while the remaining members move
more or less randomly in other directions. Vice versa, small
spread and large great-circle errors occur if many ensemble
members head to the same wrong direction. The upper
and lower error-quantiles (Figure 6, right panels) are added
to indicate the asymmetry of the error distribution and to
provide a measure of the confidence in the error-spread
relation.

3.3. Central pressure

Note that an intensity (maximum wind speed) of tropical
cyclones is almost never actually measured but inferred,
so that empirical relationships may be used to derive the
maximum sustained wind speed from the central pressure
(Takahashi, 1939; Kraft, 1961). Instead, we analyse ensemble
forecasts of tropical cyclone central surface pressure. These
forecasts are obtained by the pressure values attached to
each member selected for ensemble track prediction. The
ensemble mean forecast error shows an almost linear growth
with lead time (Figure 7). For completeness we include here
the central pressure ensemble forecasts (Figure 8, Table 3)
for two cases (George and Wati, see section 4). We include
a set of forecasts up to 12 hours, which are initialized at
6-hourly time intervals; the diagrams show that weaker
(stronger) intensification is well (hardly) predicted for Wati
(George).

4. Combination forecasts, hazardous areas and case-
studies

Combinations of NWP forecasts with empirical predictions
improve, on average, short-term and long-range forecasts
(Fraedrich and Smith, 1989; Leslie and Fraedrich, 1990;
Metzger et al., 2004). Applied to forecasts in the Australian
tropical cyclone seasons 1984/1985 to 1987/1988, an
improvement of 15% over the next most accurate individual
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Figure 6. Relation between forecast error and ensemble spread (2001–2007) for 12, 24 and 48 h lead times. Scatter plots for (a) 12 h, (c) 24 h, and
(e) for 48 h forecasts; great-circle error (dark grey dashed line) in spread bins of (b) 5 km for 12 h, (d) 10 km for 24 h, and (f) 20 km for 48 h forecasts:
median (light grey dashed line) with 25% and 75% quantiles (vertical solid lines). The linear slope for the weighted mean (upper number) and median is
indicated. The histogram (upper part of panel) shows the corresponding forecast spread distribution.

method was achieved (Leslie and Fraedrich, 1990). Similar
results are demonstrated by superensemble forecasts based
on linear combinations of NWP multimodels (Vijaya Kumar
and Krishnamurti, 2003). Here the optimal combination
of EWA with UKMO NWP is introduced, tested for
independent forecasts, and compared with other model
combinations, for example the combination of two empirical
forecasts schemes, EWA and CLIPER.

4.1. Combination forecasts

The longitude �λComb and latitude �ϕComb displacement
forecasts by UKMO NWP and EWA of tropical cyclone
tracks are linearly combined (Leslie and Fraedrich, 1990):

�λComb = a1 · �λNWP + a2 · �λEWA + a3

�ϕComb = a4 · �ϕNWP + a5 · �ϕEWA + a6
. (4.1)
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Figure 7. Australian tropical cyclone central pressure forecast errors
(2001–2007) for the Ensemble-Weighted Analog (EWA) prediction model:
mean forecast errors (in hPa, compared to the best track data) changing
with forecast lead time (6 h time step).

The coefficients (a1, a2, a3; a4, a5, a6) =(0.293, 0.747,
0.202 ; 0.465, 0.548, 0.081) are determined by multivariate
regression conditioned by minimizing the squared forecast
error. The regression coefficients used for independent
consensus forecasts (2001–2007) are determined from the
combination dataset (1992–2000, see Figure 2, section 2).
Note that the regression coefficients are not equal, because
the models contribute differently to minimizing the forecast
error. That is, EWA dominates the zonal track component
(a1 vs. a2). The EWA (NWP) contribution has a larger
(smaller) influence on the zonal propagation. The joint bias
of EWA and NWP on predicting the zonal (a3) and lateral
(a6) displacements indicates an underestimation of the TC’s
propagation. Table 1 summarizes the linear combination
forecasts error which is based on 378 independent UKMO
NWP and CLIPER forecasts in 2001–2007: great-circle
errors at 24 h and 48 h of 118 km (if quadratic terms
are also considered: 116 km) and 270 km are achieved
improving the best individual forecasts of the UKMO NWP
of 139 km by about 21 km (at 24 h). In comparison,
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Figure 8. Tropical cyclone central pressure forecasts (up to 24 hours)
at six-hourly intervals: (a) George forecasts commencing on 6 March at
0000 UTC; and (b) Wati forecasts issued on 22 March at 0000 UTC. The
full dots denote the initial value identical to the (best track) verification;
the dotted line connects the predicted central pressure values.

the NWP–CLIPER combination gives a comparable error
of 117 km at 24 h. Note that the empirical forecast model
combination, EWA and CLIPER, leads to a great-circle error
of 139 km for 24 h predictions which is comparable to NWP.

Table 3. EWA intensity (pressure) forecasts compared with best track values for the case-studies in Figure 8: predicted pressures and best track pressure
value (in brackets).

Lead time 0 h 6 h 12 h 18 h 24 h

George 976 975 974 973 972
6 March 2007 (976) (974) (978) (978) (974)
0000 UTC
George 978 977 977 976 975
6 March 2007 (978) (978) (974) (964) (956)
1200 UTC
George 974 973 971 970 969
7 March 2007 (974) (964) (956) (952) (930)
0000 UTC
George 956 954 954 955 957
7 March 2007 (956) (952) (930) (924) (902)
1200 UTC
Wati 960 959 958 957 957
22 March 2006 (960) (955) (955) (955) (960)
0000 UTC
Wati 955 955 954 954 954
22 March 2006 (955) (955) (960) (960) (955)
1200 UTC

Copyright c© 2012 Royal Meteorological Society Q. J. R. Meteorol. Soc. 138: 1828–1838 (2012)



1836 H. Langmack et al.

Obviously, EWA forecasts contribute sufficient independent
information to a mutual combination with the UKMO
NWP, likewise CLIPER. Contributions with quadratic
entries and cross-correlations are also studied and presented
in brackets in Table 1. In summarizing, the combination
forecast outperforms the individual dynamic UKMO NWP
model and the statistic-based EWA model; best results are
obtained by a combination of the three forecasts UKMO
NWP–EWA–CLIPER with 116 km (114 km) at 24 h, for
which, however, the CLIPER contributions are marginal. For
lead times beyond 48 h, UKMO NWP always performs the
best, while the combination with CLIPER or EWA improves
the performance. The theoretical maximum gain using
completely independent models would be n1/2 (Goerss,
2000), where n is a measure of effective degrees of freedom
and consequently less than or equal to the number of
independent models. Note that combination schemes of
higher-order regression may, at times, perform better than
linear ones (see also Burton, 2006; Sampson et al., 2007).

We tested the stability of the regression coefficients
through a further calculation with a reduced combination
dataset from 1992 to 1997 and a test set from 1998 to 2004.
The resulting coefficients (a1, a2, a3; a4, a5, a6) = (0.261,
0.759, 0.196 ; 0.423, 0.648, 0.065) are similar to those
obtained from 1992 to 2000. Applying regression coefficients
to the test set 2001–2007, the resulting coefficients
(a1, a2, a3; a4, a5, a6) = (0.664, 0.319, 0.140 ; 0.508, 0.440,
0.024) show dominance of UKMO NWP versus EWA in the
latitude coefficients, which is due to the improvement of
the UKMO NWP (see also Table 2 for individual hurricane
seasons).

4.2. Hazardous areas

The EWA predicted ensemble tracks are subjected to a spatial
cluster analysis to identify hazardous areas. Here we focus on
track bifurcations which depend on atmospheric states that
are not sufficiently considered by the forecast scheme. For
example, midlatitude trough interaction (Sampson et al.,
2006) leading to track change may not be fully captured by
an ensemble weighted forecast, if too few of such cases
exist in the analog pool. However, different hazardous
areas identified by the resulting cluster centroids may
hint at ensemble bifurcations. We demonstrate that the
average forecast track derived from the cluster of highest
probability – that is the cluster whose centroid is a posteriori
chosen as the one closest to the best track – outperforms the
EWA ensemble means. The evaluation consists of statistics
based on the verification dataset, comprising all lead times
of 24 h within the period from 2001 to 2007 in the Australian
region. Thus, selecting the best cluster from next best track
observation, EWA probabilistic forecasts perform better
than NWP with mean position errors of 136 km compared
to 139 km of NWP. A method to determine the optimal
number of clusters and considering further atmospheric
states provides more-detailed information on the error-
spread relation and may lead to better results; this is
the subject of future research. Nevertheless bifurcations of
highest probability point to potentially hazardous areas and
attract the forecaster’s interest, whereas the EWA average
forecast track often leads to no hazardous areas in some
cases.

4.3. Two cases of sudden change in track direction

The tracks of tropical cyclone George (2007) in the western
Australian basin and Wati (2006) in the eastern Australian
basin show a sudden change of direction (Figure 9). Their
track forecasts are analysed supplementing the error statistics
presented so far by two case-studies. Note that most of the
tropical cyclones occur in the western part of the Australian
region but the threat of landfall in densely populated areas is
higher in the east. Therefore, we focus on the ability of EWA
to predict change of track direction in both, utilizing the
48 h forecast ensemble expressed probability of occurrence
in an area covered by 1◦ grid. Their results presented in
Figure 8 are briefly described.

Western Australian basin (George 2007; (a)–(d)). At the
track bifurcation, issued at 7 March (1200 UTC), the
48 h probability prediction (issued at that time) shows
two regions of equal shadowing which reveal the same
number of tropical cyclone tracks at these locations. The
preceding 48 h forecasts issued on 6 March (1200 UTC)
and 7 March (0000 UTC), however, show darker shading
(larger probability) where both the EWA mean and the
NWP forecast tracks point in the wrong direction, following
the dominant first cluster. However, lobes of lighter
shading (directed towards the coastline) already emerge,
marking another cluster and giving landfall a considerable
probability.

Eastern Australian basin (Wati 2006; (e)–(f)). At the
track bifurcation, issued at 22 March (0000 UTC), the
48 h EWA prediction (issued at that time) dislocates the
future cyclone position to the south-west of the best track.
The NWP forecast also follows that route; it changes to
the correct south-eastward direction, however, 24 h later.
Although EWA mean and probabilistic forecasts (with
darkest shadowing) point south-westward, a bifurcation
into the correct direction is indicated by the structure of
the probability field (one lobe in the darker shaded area).
Note that the EWA–NWP combination follows the best
track direction, but with too slow propagation; 12 h later,
NWP, the EWA mean, the combination and the closest,
dominant lobe of shaded areas point into the best track
direction, but EWA and combination forecasts reveal too
slow propagation.

A further comment appears in order here: EWA forecasts
perform best in the western and eastern parts of the
Australian basin where most tropical cyclones occur. Track
forecasts in the Coral Sea or the Gulf of Carpentaria region,
however, appear to be more erratic with sudden track
changes and strong stationarity. Thus, the analog pool
contains too few adequate ensemble members supporting
a reliable forecast ensemble for such cases. Here, the NWP
combination forecast gains much better results (see also
Leslie and Fraedrich, 1990).

5. Summary and conclusion

An analog forecast scheme with self-adapting metric has
been developed which, using local averaging optimisation,
does not include previous forecasts in the analog search,
thus avoiding inflation of the analog track ensemble. The
forecast scheme comprises two optimisations: (i) adapting
the state space metric weights to select optimal ensemble
members from the history; and (ii) identifying ensemble
member weights to obtain optimal ensemble averaged
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(a) (b)

(c) (d)

(e) (f)

Figure 9. Independent tropical cyclone track forecasts. For George (western Australian basin 2007, 6 and 7 March at 0000, 0600 and 1200 UTC), forecasts
are issued on 6 March at 0000 UTC (a) and 1200 UTC (b), on 7 March at 0600 UTC (c) and 1200 UTC (d); for Wati (eastern Australian basin 2006)
forecasts are issued on 22 March at 0000 UTC (e) and 1200 UTC (f). EWA 6 h weighted ensemble mean forecasts (solid line with circles), UKMO NWP
forecasts (dotted line with diamonds), combination forecasts of EWA mean and UKMO NWP (dashed line with squares), and the best-track positions
(solid line with triangles). The shaded areas quantify the 48 h EWA ensemble forecast probability of the tropical cyclone occurring in (1◦ × 1◦ ) grids.

forecasts. These weights are determined by a metric adaption
algorithm minimizing a forecast error representing the
cost function. Independent forecasts are performed in
the Australian basin extending over the Indian Ocean
(2001–2007). Standing alone, the Ensemble-Weighted
Analog scheme demonstrates some advantages:

• Forecasts are substantially better than other, simpler
statistical techniques (e.g. CLIPER). Track position
errors of the ensemble-weighted mean forecasts are
comparable to a numerical weather-prediction model
(NWP of the UKMO) for the 24 h predictions. The
forecast analysis shows an error of about 140 km;
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intensity estimates and the relation of forecast error
to ensemble spread are also discussed.

• Ensemble forecast techniques have been employed to
provide:

(i) additional information to forecast possible track
recurvature; and

(ii) useful quantitative forecasts of the forecast error
which shows a linear error-spread relation,
which does not deteriorate with increasing
forecast lead time.

• Intensity (or central pressure) forecasts may also be
performed, appearing as a skilful forecast by-product
comparable to NWP if sufficient observations are
available.

• Combining EWA forecasts with UKMO NWP yields
the best performance up to a lead time of 48 h,
if compared to UKMO NWP alone. EWA and the
combination forecast errors are smaller in the regions
to the western part of the basin and higher in the
Coral Sea east of Australia, where sudden changes of
direction occur frequently.

• Ensemble weighted-average forecasts improve over
their unweighted counterparts by extending the good
performance up to 48 h. That is, the ensemble-
weighted analog predictions are useful beyond 24 h.

• Probability fields of predicted tropical cyclone
positions are derived from a cluster analysis dividing
all analog ensemble members into two clusters,
whose forecasted probability fields describe ensemble
dispersion structures which, even for the 48 h
forecasts, quantify possible future changes in track
direction (and/or speed).

In summarizing, we try to demonstrate the usefulness
of empirical nonlinear schemes for ensemble forecasts of
tropical cyclones. These schemes appear to be of particular
value when attaching weights to each ensemble member to
determine future ensemble mean positions (and intensities)
after being selected from a state space of optimal metric. As
these optimisations lead to an extended forecast range,
the model may provide an optimal partner for NWP
combination forecasts and, due to the ensemble spread,
also for forecast error predictions. In particular for longer
lead times, possible quantification of the chances of changing
track direction is suggested. Thus clusters of EWA ensemble
forecasts support the forecasters well by pointing to the
hazardous regions. Adding information on midlatitude
troughs to the model in future may reduce the bifurcations
of forecasted tracks and give the forecasters more significant
support.
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